Part and Assembly Modeling with SOLIDWORKS 2015

Huei-Huang Lee

Contents

Preface I

Chapter I Sketching 2

I.I Arm 3
I. 2 RatchetWheel 17
I. 3 Ratchet Stop 23
I. 4 Cover Plate 28

Chapter 2 Part Modeling 36

.I Crank 37
2.2 Geneva Gear Index 43
2.3 Yoke 50
2.4 Support 56
2.5 Wheel 62
2.6 Transition Pipe 66
2.7 Threaded Shaft 75
2.8 Lifting Fork 80

Chapter 3 Assembly Modeling 86
3.1 Shaft Assembly 87
3.2 Universal Joint 97
3.3 Clamp 107

Index 119

Preface

Use ofThis Book

This workbook is an introductory tutorial to geometric modelings using SOLIDWORKS 2015. It is not intended to be a comprehensive guide to parts and assembly modelings. It is prepared mainly for those students who have no experience in SOLIDWORKS geometric modeling, but want to acquire some. I provide this workbook to the students in my classroom and require them to complete the exercises in 3-4 weeks, to make them feel more comfortable when working on advanced capabilities of SOLIDWORKS, such as Simulation, Motion.

Companion Webpage

A webpage is maintained for this book:
http://myweb.ncku.edu.tw/~hhlee/Myweb_at_NCKU/SWG2015.html
The webpage contains links to following resources: (a) videos that demonstrate the steps of each section in this book, and (b) the finished SOLIDWORKS files of each section. (c) This book, in PDF format.

As for the finished files, if everything works smoothly, you may not need them at all. Every model can be built from scratch by following the steps in the book. I provide these files just in case you need them. For example, when you run into trouble and you don't want to redo it from the beginning, you may find these files useful. Or you may happen to have trouble following the steps in the book, you can then look up the details in these files.

Notations

Chapters and sections are numbered in a traditional way. Each section is further divided into subsections. For example, the first subsection of the second section of Chapter 3 is denoted as "3.2-I." Textboxes in a subsection are ordered with numbers, each of which is enclosed by a pair of square brackets (e.g., [4]). We refer to that textbox as "3.2-I[4]." When referring to a textbox from the same subsection, we drop the subsection identifier. For example, we simply write "[4]." Notations used in this book are summarized as follows (for further illustration, see page 4):

3.2-I	Numbers after a hyphen are subsection numbers.
[I], [2], ...	Numbers with square brackets are textbox numbers.
SOLIDWORKS	SOLIDWORKS terms are boldfaced.
(Round-cornered textboxes)	A round-cornered textbox indicates some mouse or keyboard actions are needed.
(Sharp-cornered textboxes)	A sharp-cornered textbox is used for commentary only; no mouse or keyboard actions are needed in that step.
\#	A symbol \# is used to indicate the last textbox of a subsection.

Huei-Huang Lee

Associate Professor

Department of Engineering Science
National Cheng Kung University,Tainan, Taiwan
e-mail:hhlee@mail.ncku.edu.tw
webpage: myweb.ncku.edu.tw/~hhlee

Chapter I

Sketching

Section I.I

Arm

I.I-I About the Arm

About the Textboxes

I. Within each subsection (e.g., I.I-2), textboxes are ordered with numbers, each of which is enclosed by a pair of square brackets (e.g., [I]). When you read the contents of a subsection, please follow the order of the textboxes.
2. The textbox numbers are also used as reference numbers. Inside a subsection, we simply refer to a textbox by its number (e.g., [I]). From other subsections, we refer to a textbox by its subsection identifier and the textbox number (e.g., I.I-2[I]).
3. A textbox is either round-cornered (e.g., $[1,3,4,6]$) or sharp-cornered (e.g., $[2,5])$. A round-cornered textbox indicates that mouse or keyboard actions are needed in that step. A sharp-cornered textbox is used for commentary only; i.e., mouse or keyboard actions are not needed in that step.
4. A symbol \# is used to indicate the last textbox of a subsection [6], so that you don't leave out any textboxes.

SOLIDWORKS Terms

In this book, terms used in SOLIDWORKS are boldfaced (e.g., Part in $[5,6]$) to facilitates the readability.

I.I-3 Set Up Units

I.I-4 Draw a Circle

[5] Color Codes of Sketch Entities

A sketch entity is blue-colored (either light-blue or dark-blue) when it is not yet well-defined [4]. A well-defined entity (i.e., fixed in the space) becomes black (e.g., [7], next page). When over-defined, an entity becomes red.
[7] Click the circle and move lowerrightward to create a diameter; type 0.25 (in) for the diameter. The circle now turns black (fixed). Use mouse functions to zoom in/out [8] or pan the sketch [9]. Drag the dimension to a location like this. Finally, press ESC to dismiss the Smart Dimension.

[II]The font size of the dimension text can be changed (see [12]).
[8] Scrolling the Mouse Wheel allows you to zoom in/out the sketch. $\varnothing .250$

[12] To change the
font size of
dimension texts,
select Dimension
in the Document
Properties
(I.I-3[1, 2], page 5).
[14] Image Quality can be used to improve the used to improve the
smoothness of the model. \#

SOLIDWORKS Commands

There are literally hundreds of SOLIDWORKS commands (tools). All commands can be found in the Pull-Down Menus [15]. Nevertheless, the most intuitive way to issue a command is through a context-sensitive menu, or simply called Context Menu $[1,3,6]$ (page 6). To issue a command with a Context Menu, you right-click an object on either the Part Tree [16] or the Graphics Area [17]. The commands available in a Context Menu depend on the kind of object you're working on (that's why it is called a context-sensitive menu). In step [I] (page 6), the object you were working on is the Front plane; in steps [3,6] (page 6). the object you were working on is the Graphics Area.

After you accumulate some experiences, you may find that a more convenient way to issue a command is simply clicking a command on a Toolbar (e.g., [10], last page). In this book, we roughly follow these rules to issue a command:
I. As novices, we issue a command through a Context Menu, because it is the most intuitive way.
2. If a command is not available with a Context Menu, we select it from the Pull-Down Menus, because it is the most comprehensive way (i.e., all commands can be found there).
3. As we accumulate experiences, we begin to issue a command by clicking a button in a Toolbar, because it is the most convenient way.

I.I-5 Draw Another Circle

[I] If Sketch Toolbar is not active, click Sketch to bring it up.

1.375

 second circle becomes black (fixed) too. \#

[15] De-select the two circles (press ESC or click anywhere on the Graphics Area).

Now, the two circles have the same radius. The second circle is still blue-colored, meaning that it is not well-defined yet. We now impose another relation.

I.I-7 Complete the Sketch

[I] Use Circle command to draw three circles which are concentric with the first three circles respectively.

 Note that, to draw the tangent lines, you click a circle NEAR quarter-points (rather than AT quarter-points). For these two tangent lines, the tangent points are not at quarter-points. If you made any mistakes, you always can Undo the mistakes (I.I-4[IO], page 7).

$[17]$ Press ESC to dismiss
Smart Dimension.
Select Sketch Fillet from
the Context Menu.

I.I-8 Generate 3D Model

I.I-9 Wrap Up

[2] Select File>Exit from PullDown Menus to quit SOLIDWORKS. \#

Section I. 2

RatchetWheel

I.2-I About the Ratchet Wheel
[2] The ratchet stop is used to control the rotational direction of the ratchet wheel. The ratchet stop will be created in the next section.
[I] A ratchet wheel rotates in a certain direction controlled by a ratchet stop [2]. In this section, we'll create a 3D model for this ratchet wheel.

Unit: in.
Thickness: 0.25 in .

I.2-2 Start Up

[I] Launch SOLIDWORKS and create a new part (I.I-2[I, 4-6], page 4). Set up IPS unit system with 2 decimal places for the length unit (I.I-3, page 5). Start a sketch on Front plane (I.I-4[I, 2], page 6).\#

1.2-3 Draw a Construction Circle

[7] Construction Geometry

Frequently used Construction Geometries include construction lines and construction circles. A construction line can be finite length or infinite length. A Construction Geometry is used for reference only, it is not a geometric entity. \#

I.2-4 Draw Construction Lines

I.2-5 Draw a Tooth

I.2-6 Duplicate the Tooth

I.2-7 Finished the Sketch and Generate 3D Model

Section I. 3

Ratchet Stop

I.3-I About the Ratchet Stop

I.3-2 Start Up

[I] Launch SOLIDWORKS and create a new part (I.I-2, page 4). Set up IPS unit system with 3 decimal places for the length unit (I.I-3, page 5). Create a sketch on Front plane (I.I-4[I, 2], page 6).\#

I.3-3 Draw the Sketch

I.3-4 Generate 3D Model

[2] Save the part with the name Stop. Close the file and exit SOLIDWORKS. \#

Section I. 4

Cover Plate

I.4-I About the Cover Plate

I.4-2 Start Up

[I] Launch SOLIDWORKS and create a new part (I.I-2, page 4). Set up IPS unit system with 3 decimal places for the length unit (I.I-3, page 5). Create a sketch on Front plane (I.I-4[I, 2], page 6).\#

I.4-3 Draw the Sketch

I.4-4 Generate 3D Model

[I] Extrude the sketch 0.046 inches to create this 3D model.
[2] Save the part with the file name Cover. Close the file and exit SOLIDWORKS.\#

Chapter 2
 Part Modeling

Section 2.I

Crank

2.I-I About the Crank

[I] In this exercise, we'll create a 3D solid model for a crank [2]. The model can be viewed as a series of three twostep operations; each involves drawing a sketch on a plane and then extruding the sketch. The material of the body is either added to or cut from the existing body.

2.I-2 Start Up

[1] Launch SOLIDWORKS and create a new part.
[2] In the Options, select MMGS as unit system.

2.I-3 Draw a Sketch for the Base Body

 Front plane.

2.I-4 Extrude the Sketch to Create the Base Body

2.I-5 Add Features to the Base Body

Section 2.2

Geneva Gear Index

2.2-I About the Geneva Gear Index

[I] In this exercise, we'll create a 3D solid model for a Geneva gear index [2].

2.2-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system with 3 decimal places for the length unit. \#

2.2-3 Draw a Sketch for I/5 of the Gear Index

[I] Create a sketch on Front plane.

[8] Draw a line connecting the upper circle to the outer arc. Add a Parallel relation between the line and the line next to it. Add a Tangent relation between the line and
the connecting circle.

[9] Use Centerline command to draw a centerline starting from the origin. Specify the length (1.529 in). Make the sector symmetric about the centerline. To do this, select Add Relation, click the centerline and the two edge lines of the sector, and select Symmetric in the Property Box.

2.2-4 Extrude the Sketch

2.2-5 Complete the Full Model

[14] The Hole Wizard command is also available in Features Toolbar.

[15] Save the part with the file name Geneva. Close the file and exit SOLIDWORKS. \#

Section 2.3

Yoke

2.3-I About the Yoke

[2] Details of the yoke.\#

[I] The yoke is a part of a universal joint. In this exercise, we'll create a 3D solid model for the yoke.

2.3-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system with 3 decimal places for the length unit. \#

2.3-3 Create a Base Body

[I] Create a sketch on Front plane.

[I] From Pull-Down Menus, select Insert>Features>Fillet/Round...

2.3-5 Create a Plane

2.3-6 Create the Shaft

Section 2.4

Support

2.4-I About the Support

2.4-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system and with 3 decimal places for the length unit. \#

2.4-3 CreateVertical Plate

[I] Create a sketch on Front plane.

2.4-4 Create Horizontal Plate

[2] Select Reference Geometry>Plane from the Features Toolbar.

2.4-5 Create Fillet

[6] Click OK.

[7] Save the part with the file name Support. Close the file and exit SOLIDWORKS.\#

Section 2.5

Wheel

2.5-I About the Wheel

[I] So far, we exclusively used Extrude command to create 3D solids. In this section, we introduce another command to create 3D solids: Revolve, which takes a sketch as the profile and revolves about an axis to create a 3D solid body. We'll create a 3D solid model for a wheel [2]. The wheel is axisymmetric. An axisymmetric body always can be created by drawing a profile then revolving about its axis of revolution.

2.5-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system with 2 decimal places for the length unit. \#

2.5-3 Create a Sketch for the Profile

2.5-4 Revolve the Sketch

[2] The Revolve command is also available in the Features Toolbar.

Section 2.6

Transition Pipe

2.6-I About the Transition Pipe

[I] In this section, we introduce another command to create 3D solids: Sweep, which takes a sketch as the path and another sketch as the profile; the profile then "sweeps" along the path to create a 3D solid body. In this exercise, we'll create a 3D solid model for a transition pipe, which is used to connect two pipe segments.

2.6-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system with 2 decimal places for the length unit. \#

2.6-3 Create a Sketch for the Path

[I] Create a sketch on Front plane.
[2] Draw a sketch like this. This sketch will be used as a sweeping
path. Note that, each end point aligns with the origin either vertically or horizontally.

2.6-4 Create a Sketch for the Profile

[2] In the Standard Views Toolbar, click Normal To.

2.6-5 Create the Curved Pipe

2.6-6 Create the Lower End Plate

[4] Draw a sketch like this. The sketch consists of 7 circles, including a construction circle of diameter 2.5 in and four circles of diameter 0.25 in .

2.6-7 Create a Mirroring Plane

[I] Next, we want to create the upper end plate by using Mirror command. The mirroring plane will be created by rotating the Top plane 45 degrees about an axis coincident with the Z-axis. First, we create the axis.
[2] From Features Toolbar, select Reference Geometry>Axis.

2.6-8 Create the Upper End Plate

- Partl (Defaults<Defaults_Ph...
(1) - $\mathbf{0}$ History
- Sensors
[2] In Features Toolbar, click Mirror.
[I] Make sure the newly created plane is highlighted.

\qquad

Front准 Top

- Right - ${ }^{\$}$ Origin (1)- ${ }^{5}$ Sweep 1
 from the Graphics Area) select the lower end plate (Boss-Extrudel).

Section 2.7

Threaded Shaft

2.7-I About the Threaded Shaft

[I] The threaded shaft is a part of the clamping mechanism mentioned in Sections I.I and 2.4 [2]. In this exercise, we will create a 3D solid model for the threaded shaft.

2.7-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up IPS unit system with 3 decimal places for the length unit. \#

2.7-3 Create a Shaft Base

[2] Revolve (2.5-4[2], page 65) the sketch 360 degrees to create the shaft base. Use the bottom line of the sketch as the Axis of Revolution [3].

*Trimetric

2.7-4 Create Threads

2.7-5 Create a Hole

[4] Save the part with the file name Shaft. Close the file and exit SOLIDWORKS.\#

Section 2.8

Lifting Fork

2.8-I About the Lifting Fork

[I] The lifting fork is used in an LCD (liquid crystal display) manufacturing factory to handle glass panels. In this section, we will create a 3D solid model for the lifting fork.

The cross sections of the prongs (fingers) are not uniform along the length [2, 3, 4]. The Extrude command or Sweep command can not be used to created the prongs. This exercise introduces a new command to create 3D solids: Loft, which takes a series of profiles and creates a 3D solid that fits through these profiles.

2.8-2 Start Up

[I] Launch SOLIDWORKS and create a new part. Set up MMGS unit system with zero decimal places for the length unit.\#

2.8-3 Create a Transversal Beam

[I] On Front plane, draw a sketch like this.

2.8-4 Create Two Planes

2.8-5 Sketch Three Profiles

[4] Create a rectangle of $130 \mathrm{~mm} \times 20 \mathrm{~mm}$ like this. Click Exit Sketch.

[6] Create a rectangle of $100 \mathrm{~mm} \times 10 \mathrm{~mm}$ like this. Click Exit Sketch. \#

2.8-6 Create a Finger

2.8-7 Create the Other Fingers

[8] Save the part with the file name Fork. Close the file and exit SOLIDWORKS. \#

Chapter 3

Assembly Modeling

Section 3.1

Shaft Assembly

3.I-I Introduction

$[I]$ In this exercise, we'll create a shaft assembly $[2,3]$. The assembly consists of three parts: the Shaft [4] created in Section 2.7, a Handle [5], and a Hinge [6]. We use a coordinate system for the assembly which is coincident with that of the part Shaft.

3.1-2 Open Shaft

3.I-3 Create Handle

[2] On Front plane, draw a circle centered at the origin like this.

Thin Feature
Selected Contours
\approx

3.1-4 Create Hinge

[2] On Front plane, draw a circle centered at the origin like this.

3.I-5 Create a New Assembly

[8] Click the assembly's origin. The Shaft is inserted and its coordinate system aligns with the assembly's coordinate system.\#

${ }^{\text {* }}$ Trimetric

3.1-6 Insert the Other Components

3.I-7 Assemble Handle

3.I-8 Assemble Hinge

[6] And select this circular face of the Shaft.

[8] The Hinge is not fixed yet; it can rotate about the Shaft's axial direction. We need one more Mate.

- Assem1 (Default 6 Default_Dis...
+ (2) History
(2) Sensors
+ A Annotations

[9] Select the Front plane of the assembly.
R Right \qquad
- Origin
+- (f) Shaft $<1>$ (Default \ll De...
\pm (-) Handle < 1 > (Default \ll...
- $-(-)$ Hinge $<1>$ (Default \ll D..

[I2] The finished assembly. Note that we've turned off the

*Trimetric
[13] Save the assembly with the file name ShaftAssembly. The full name of the document is ShaftAssembly.SLDASM. Exit SOLIDWORKS. \#

Section 3.2

Universal Joint

3.2-I Introduction

[I] In this exercise, we'll create a universal joint [2]. The assembly consists of four kinds of parts [3-6], of which the Yoke [3] was created in Section 2.3.

3.2-2 Open Yoke

3.2-3 Create Swivel

3.2-4 Create Bushing

[2] Create a 3D model like this. Use any coordinate system as your convenience. Save the part with the file name Bushing. \#

*Trimetric

3.2-5 Create Pin

*Trimetric

3.2-6 Create a New Assembly

3.2-7 Insert Bushings and Pins

3.2-8 Assemble Bushings and Pins

3.2-9 Assemble Yokes

3.2-IO Fix Upper Yoke

[I] An (f) before the Swivel indicates that the Swivel is
 fixed. Right-click the Swivel and select Float from the Context Menu. The (f) sign turns to (-) sign, indicating that it is not fixed any more. Using your mouse, you can move every part of the assembly. Let's fix the upper Yoke. To do that, you could simply right-click Yoke<I> and select Fix from the Context Menu. Another way is to create three Coincident Mates [2-4].

Section 3.3

Clamp

3.3-I Introduction

[I] In this section, we'll create a clamping mechanism mentioned in Sections I.I, 2.4, 2.7, and 3.I. The assembly consists of 8 kinds of components [2-9], of which the Arm [2] was created in Section I.I, the Support [3] was created in Section 2.4, and the ShaftAssembly [4] was created in Sections 2.7 and 3.1. Details of other components are shown in [10-15].

Unit: in.

3.3-2 Create Grip

Click New to create a new part. Set up IPS unit system with 3 decimal places for the length unit.

3.3-3 Create PinA

[2] Create a 3D model like this. The details are shown in $3.3-\mathrm{I}[10]$ (last page).

Use any coordinate system as your convenience. Save the part with the file name Grip. \#
[2] Create a 3D model like this. The details are shown in $3.3-\mathrm{I}[\mathrm{II}]$ (last page).

Use any coordinate system as your convenience. Save the part with the file name PinA. \#

3.3-4 Create PinB

[2] Create a 3D model like this. The details are shown in 3.3-I[I2] (last page).

Use any coordinate system as your convenience. Save the part with the file name PinB. \#

3.3-5 Create PinC

[2] Create a 3D model like this. The details are shown in 3.3-1[13] (page 108). Use any coordinate system as your convenience. Save the part with the file name PinC.\#

3.3-6 Create HingeB

[I] Click New to create a new part. Set up IPS unit system with 3 decimal places for the length unit.
 The details are shown in $3.3-$ [[14, 15] (page I08). Use any coordinate system as your convenience. Save the part with the file name

HingeB. \#

3.3-7 Create a New Assembly and Insert a Support

3.3-8 Mirror the Support

3.3-9 Unfix the Supports

3.3-II Assemble PinC

3.3-I2 Assemble Arms

3.3-I3 Assemble PinA

3.3-I5 Assemble HingeB

3.3-16 Assemble ShaftAssembly

3.3-I7 Test the Clamping Mechanism

Index

Add Relation, IO, 15, 45
Advanced Mates, 104, II 4
Angle dimension, 19,44
Arm, 3, 16, 107, 115
Arm.SLDPRT, 16
Assembly, 91, 100
Assembly Modeling, 86
Assembly Toolbar, 92, 93
At Angle, 71
Axis of Revolution, 76
Axisymmetric, 62
Base Body, 38, 42
Boss, 42
Boundaries, 78
Box-Select, 64
Browse, III
Bushing, 97, 99
Centerline, 19, 45
Centerpoint Arc, 24, 44
Circle, 6, II
Circular Pattern, 47
Circular Sketch Pattern, 21
Clamp, I07, II2
Clamping assembly, 3, 56, 75
Clamping mechanism, 87, 107, II8
Clear Selections, 21
Coincident, 94, 102
Color Codes, 6
Components to Mirror, II2
Concentric, 93, 95
Constant size, 61
Construction Geometry, 18, 44
Context Menu, 6, 8
Control, II3, II5
Control-Middle-Button, 7
Convert Entities, 78
Coordinate system, 87, 91

Crank, 37

Create opposite hand version, II2
Depth, 70
Direction I, 90
Display Style>Shaded, 74
Distance, 10
Document Properties, 5, 7
End Condition, 42, 55
Entities to mirror, 64
Entities to Pattern, 21
Equal, 10
ESC, 6, 10, I2
Exit Sketch, I5, 67, 77
Extrude, 22, 27, 4 I
Extruded Boss/Base, 15
Extruded Cut, 42, 78
Extruding Depth, 15
FeatureManager Design Tree, 8
Features, 40
Features to Pattern, 47
Features Toolbar, 15
Features Tree, 6, 8, 42
File>Close, 16
File>Exit, 16
File>New, 4
File>Save, 16
Fillet, 53, 73
Fillet radius, 14
Finger, 84
First Reference, 71
Fix, II4
Fixed, 106
Flip, 59
Float, I06, I I3
Font, 7
Font size, 7
Fork, 85

Front, 6
Full Round Fillet, 52, 53
Geneva, 49
Geneva Gear Index, 43
Geometry pattern, 85
Global coordinate system, 3
Graphics Area, 6, 8
Grip, 107, 108, 109, 116
Handle, 87, 88
Head-Up Toolbar, 9, 25
Hide/Show Items>View Planes, 73
Hide/Show Items>View Sketch Relations, 25, 51
Hinge, 87, 89
HingeB, 107, 108, I IO, II7
Hole, 42, 48
Hole Type, 48
Hole Wizard, 49, 53
Horizontal, 10, 39, 45
Horizontal dimension, 9
Image Quality, 7
Inference Line, 9
Infinite length, 18, 26
Insert Components, 92, IOI
Insert>Boss/Base>Extrude, 15
Insert>Boss/Base>Revolve, 65
Insert>Boss/Base>Sweep, 68
Insert>Cut>Extrude, 42
Insert>Features>Fillet/Round, 52
Insert>Features>Hole>Wizard, 48
Insert>Pattern/Mirror>Circular Pattern, 47
Insert>Reference Geometry>Plane, 54
IPS, 5, 17
Isometric, 4|
Joint, 106
LCD, 80
Line, I2, I5
Linear Component Pattern, I I2
Linear Pattern, 84
Linear Sketch Pattern, 21
Liquid crystal display, 80
Loft, 80
Lofted Boss/Base, 84
Major diameter, 75
Mate, 93, 102
Mid Plane, 52
Mirror, 64, 72, 112
Mirror about, 64
Mirror Components, II2

Mirror plane, II2
Mirroring plane, 72
MirrorSupport, II2
MMGS, 38
Mouse functions, 7
Mouse Wheel, 7
New, 88
Next, 112
Normal To, 4 I, 67, 69
Number of Instances, 2 I, 47
Number of planes to create, 82
Offset distance, 54, 59
Options, 5
Over-defined, 6
Pan, 7
Parallel, 45
Parallel mate, 116
Park the part, 92
Part, 4, 42
Part documents, 91
Part Modeling, 36
Part Tree, 8
Path, 66
Pattern Axis, 47
Pattern Direction, 85
Pierce, 67
Pin, 97, 99
Pin down, 4
PinA, 107, 108, 109, 116
PinB, 107, 108, 109, 113
PinC, 107, 108, IIO, 115
Pipe, 73
Pitch, 75
Positions, 48, 53
Profile, 62, 66, 84
Property Box, 10
Pull-Down Menus, 4
Radius, 14, 73
Ratchet, 22
Ratchet stop, I7, 23
Ratchet Wheel, I7, 23
Reference geometries, 42, 54
Reference Geometry>Axis, 70
Reference Geometry>Plane, 59, 71, 82
Reverse Direction, 55, 70, 85
Revolve, 62, 65, 76
Right, 71
Round-cornered box, 4

Save, 16
Second Reference, 71
Shaft, 79, 87, 88
Shaft Assembly, 87
ShaftAssembly, 96, 107, II8
ShaftAssembly.SLDASM, 96
Sharp-cornered box, 4
Sketch, 6
Sketch Fillet, 14, 15, 39
Sketch Toolbar, 9, I5
Sketching, 2
Smart Dimension, 6, 9
SolidWorks, 4
SolidWorks Terms, 4
Standard Mates, I05, 116
Standard Views Toolbar, 4I, 67, 69
Stop, 27
Sub-assembly, 87
Support, 56, 6I, 107, III, II3
Sweep, 66, 68
Sweeping Path, 77
Sweeping Profile, 77
Swept Cut, 77
Swivel, 97, 98
Symmetric, 45
Tangent, 25, 45
Tangent Arc, 24
Tangent line, 13
Textboxes, 4
Thread form, 75
Through All, 42, 78
Toolbar, 8, 16
Tools>Options, 5
Tools>Sketch Tools>Circular Pattern, 21
Tools>Sketch Tools>Mirror, 64
Top, 54
Transition Pipe, 66
Trim Entities, 13, 15
Trim to closest, 13
Two Planes, 71
Undo, 7, 13
Unfixed entity, 46, 51
Unified National Coarse, 75
Units, 5
Universal Joint, 50, 97
Up To Surface, 55
User interface, 4
Vertical, I I, 39

View Orientation>Isometric, 4I
View Orientation>Normal To, 40
View Origins, 91, 96, 100
View Planes, 55, 60
Well-defined, 6
Wheel, 62, 65
Width Mate, I 04, I I5, II6
Window, 16, 91
Yoke, 50, 55, 97, 98, 103, 106
Zoom in/out, 7
Zoom to Fit, 9

