Introduction to Engineering and Technology

CCRI ENGR-1020

Spring 2018

Instructor: Jerry Bernardini

Telephone: 401-825-1189 Office

E-mail: jbernardini@ccri.edu

All E-mail must be sent with the subject: ENGR-1020-001
ENGR-1020-xxx xxx = course section number

Office Hours: Room 2188:
Tuesday 1-2PM, 5-6PM, Thursday 4-6PM (E-mail me a day in advance)

Course Materials:
2. Course Website: https://www.ccri.edu/faculty_staff/engt/jbernardini/ENGR-1020
3. Website assignments
4. Weekly Handouts
5. Online videos
6. 1 GB or larger USB Flash memory: Student must purchase a USB Flash memory device (Jump-Drive) and bring it to all classes.
7. Students must purchase a bound notebooks to used as an Engineering Journal
8. Microsoft Office: The student must have access to Microsoft Word, Excel and Power Point outside of class. Office-360 and Google-Docs will not be used in class or accepted for assignments.

Grading Policies:
Quizzes (2)..............................20%
Progress Reports....................15%
Final Exam............................15%
Journal Evaluations (2)............15%
Homework.............................15%
Team Project20%

100%

Course Objectives:
1. Learn about the major activates of engineers and technicians.
2. Learn the application of engineering principles to a wind turbine design.
3. Use Problem Based Learning (PBL) to develop engineering and critical thinking skills.
4. Learn project management and effective technical team activity skills.
5. Learn to use Microsoft Excel for technical applications.
6. Learn to use Microsoft Word for reports and resumes.
7. Learn to use Microsoft PowerPoint for technical presentations.
8. Learn the benefits of ethical behavior and practices in engineering and business.
9. Learn the engineering design process.
10. Learn how to setup and keep engineering journal.
Course Methodology

1. Project Based Learning applied to course material
2. Bi-weekly one-page progress reports
3. Website for all course material
4. Limited classroom lectures
5. Homework research assignments
6. Classroom discussion of research assignments
7. Readings assignments
8. Hands-on lab projects
9. Classroom project team/instructor meetings
10. Classroom computer applications
11. Computer application instruction and assignments
12. Project Team meetings and activities
13. Project Team construction
14. Project Team testing and analysis
15. Project Team report and presentation

Course Policies

1. The class will be a cell phone free environment. Phones must be on vibrate and if you must take a call, it must take outside the classroom.
2. To receive full credit for class participation, students must attend all classes. If a student misses a class it will be the student’s responsibility to obtain the assignment from the website.
3. Unless specified, all homework assignments are due one week after assigned.
4. Homework will be accepted up to one week after the due date with a maximum of 50% of the normal grade. No assignments will be accepted after a one week.
5. Unless specified all parts of the homework assignments (HW) must be submitted printed and stapled as one package. Often there are multiple parts to a homework assignment.
6. All assignments must be completed in Microsoft Word or Microsoft Excel and submitted in printed form.
7. Students are expected to be prepared to discuss in class an assigned research topic.
8. The project must be completed as a team. Although the project grade is a team grade, members of the team that do not contribute will receive a reduced project grade.
9. If a project team is not functioning it is the responsibility of the team members to resolve the issues. This is an important skill for the work place. If a resolution of team problems this is not possible, the instructor must be informed of the problems before class-7.
10. Students must bring their engineering journal to every class with up to date entries.
11. Students must save their classroom and homework on a USB drive.
Introduction to Engineering and Technology
CCRI ENGR-1020 Spring 2018 Outline

<table>
<thead>
<tr>
<th>Class</th>
<th>Class Activities and Objectives</th>
<th>Textbook and Readings</th>
<th>Homework and Team Assignments, Quizzes, Evaluations</th>
</tr>
</thead>
</table>
| 1 (1/22) | Introductions
Build a team
Problem Based Learning (PBL)
Engineering design process
Project Overview
Engineering Journal-EJ (HO1)
Tools and equipment
Excel-Introduction (TE1)
Lab- Tour and demo | Chap-1, p.8-39
Chap-3, 73-79
Chap-10, 297-301
Handout-HO1
Excel-PDF
Excel-TE1 | p.42, prob. 13 (type the answers) |
| 2 (1/29) | Team Agreement
One-Page Memo Progress report(TW1)
Engineering failures and technology ethics
PowerPoint and Assignment (RP1)
Generator equation
Discuss energy and power
Discuss wind technology
Measurements and data averaging
Excel - magnet data
Using a Gaussmeter
Lab- magnets measurements (HO2) | Chap-2, p.43-53
Chap-4, 104-105
Word-TW1
Handout-HO2
Rubric-RP1 | p.58, prob. 1-7 ; type the question and your answer
Complete Progress Report Memo-1
Start PowerPoint Assignment (due in three weeks) |
| 3 (2/5) | Design Process
Discuss Faradays law
Generator electrical model
Using electrical instruments
Excel-Coil wire estimates(TE2)
Intro. Unit conversion-1
Troubleshooting
Using a digital Voltmeter (DVM)
Lab- Coil winding and testing (HO3) | Chap-3, p. 61-72
Excel-TE2
Handout-HO3 | p.86, prob. 1-10 |
| 4 (2/12) | Turbine prototype frame construction
Generator modeling
Introduction to Ohm’s law
Unit Conversion-1
Drilling charts
Lab-Generator construction (HO4) | Chap-4, p.91-110
Handout-HO4 | p.118, prob. 1-7
Complete Progress Report Memo-2 |
| 5 (2/19) | Project sketching Turbine (HO5)
Energy and Power
Scientific and Engineering notation
Measure voltage and frequency
Measure rotational velocity
Excel-Generator Data and Graphing (TE3)
Lab-Generator Testing (HO6) | Chap-5, p. 124-141
Excel-TE3
Handout-HO5
Handout-HO6 | p. 144, prob. 1, 6
Quiz-01
Journal Evaluation-01 |
| 6 (2/26) | PowerPoint presentation Group-1
Team an Instructor meetings
Turbine wind blade discussion | Chap-6, p. 146-158
Handout-HO7 | p. 161, ICA 6-7
PowerPoint Presentation-01
Complete Progress Report Memo-3 |
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Instructor/Handouts</th>
</tr>
</thead>
</table>
| 7 (3/5) | **Lift vs. drag blades**
Dimensional analysis
Lab-Prototype turbine construction-1 (HO7) | PowerPoint presentation Group-2
Turbine wind tunnel testing
Wind tunnel data analysis
Excel-Wind Tunnel Testing (TE4)
Lab-Prototype turbine construction-2
Chap-7, 168-188
Handout-HO8
Excel-TE4
p. 196, prob. 1, 5
p. 197, prob. 14
p. 201, prob. 47
PowerPoint Presentation-02 |
| 8 (3/19) | **Spring Break-No Class** | **Chap-8, p. 202-216**
Handout-HO8
Rubric-RP2
p. 267, prob. 66, 67, 68, 69
Complete Progress Report Memo-4 |
| 9 (3/26) | **Betz’s Law Discussion (HO9)**
Wind turbine power calculations and measurements
Wind turbine improvements
Wind Turbine Project Rubric-(RP2)
Lab-Prototype wind tunnel testing (HO8)
Turbine testing and modification
Turbine performance metrics
Measure mechanical vs Electrical power
Probability calculations
Statistical calculations
Excel- Wind Turbine Performance (TE5)
Lab-Improved wind turbine design | Chap-9 p. 269-278
Excel-TE5
Wind power problem set |
| 10 (4/2) | **Turbine testing and modification**
Binary Numbers Application of binary
Digital vs. Analog
Internet and Internet of Things (IoT)
Excel-Turbine Power Curves (TE6)
Lab- Wind Turbine Modification and Testing
Chap-10 p. 297-333
ADC-DAC handout
Excel-TE6
Wind Tunnel Excel Calculations
See Website Quiz-02 | Chap-11 p. 361-388
Visio-TV1
Wind Turbine performance graphing
Complete Gas Station Flow Chart |
| 11 (4/9) | **Flow Charting**
Project Flow Charting with Visio (TV1)
Gas Station pumping problem
Lab- Wind Turbine Modification and Testing | Chap-12 p. 412-430
Wind turbine analysis
Complete Progress Report Memo-6 |
| 12 (4/16) | **Flow Charting- Gas Station Solution**
3D printing
Lab- Wind Turbine Modification and Testing | **Chap-13 p. 465-471** |
| 13 (4/23) | **Turbine overall analysis**
Project report activates
Lab- Wind Turbine Modification and Testing | **Journal Evaluation-02** |
| 14 (4/30) | **Project Rubric Evaluation (RP2)**
Team Project Presentation | **Journal Evaluation-02** |
| 15 (5/7) | **Final Exam** |
Journal Evaluation-02 |