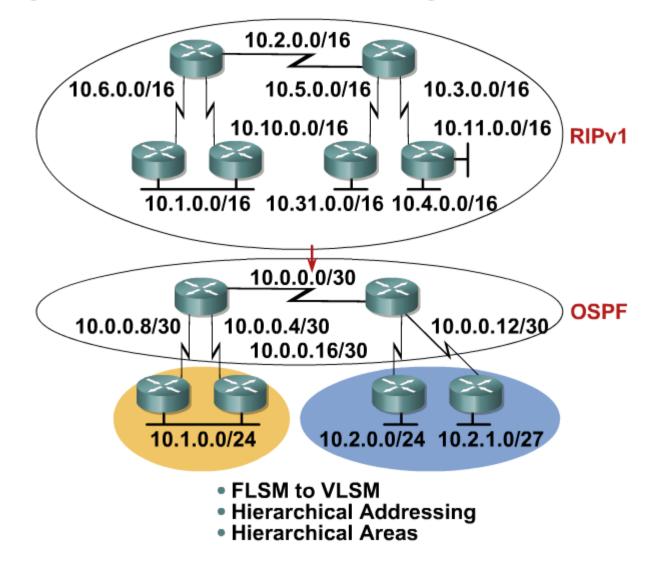
·IIIII CISCO

Route Optimization

BSCI Module 5

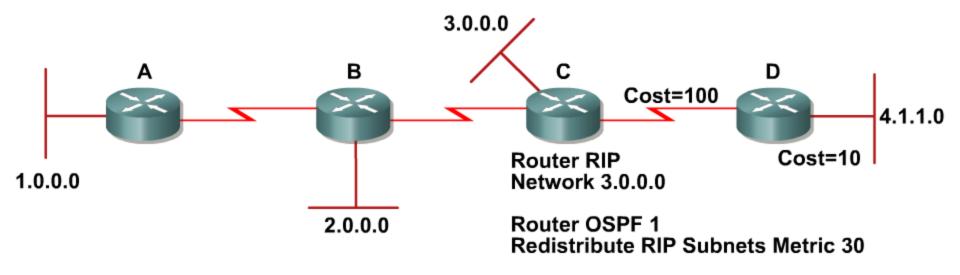
Objectives

- Explain the purpose and use of seed metrics in route redistribution.
- Describe how to redistribute routes into RIP, OSPF, EIGRP, and IS-IS.
- Explain how to verify route redistribution.
- Explain how to control routing updates using the passive-interface default command and route maps.
- Describe new DHCP commands.


Purpose of this Lesson

- Coverage of topics new to the "Route Optimization" module of BSCI.
- What's new in this module?
 - Detailed explanation of seed metrics
 - Redistribute routes into RIP, OSPF, EIGRP, and IS-IS
 - Verify route redistribution
 - Controlling routing updates with the passive-interface default command and route maps
 - Using the distance command to avoid suboptimal routing
 - More DHCP commands

Seed Metrics and Route Redistribution


Using Multiple IP Routing Protocols

Using Multiple Routing Protocols

- Interim during conversion
- Application-specific protocols
 One size does not always fit all.
- Political boundaries
 - Groups that do not work well with others
- Mismatch between devices
 - Multivendor interoperability
 - Host-based routers

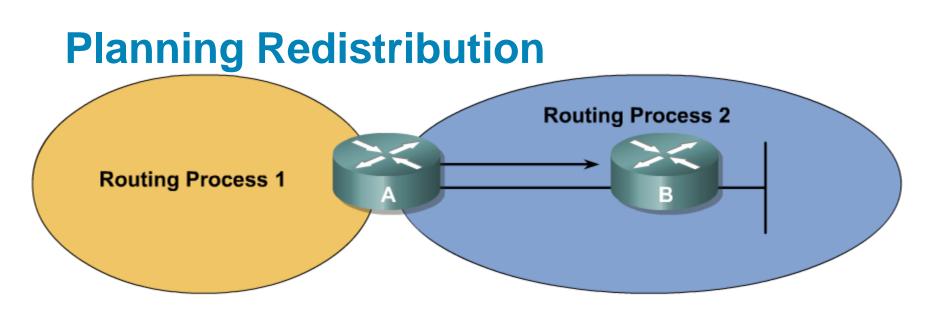
Redistribution with Seed Metric

TABLE A	TABLE B	TABLE C	TABLE D
C 1.0.0.0 R 120/1 2.0.0.0 R 120/2 3.0.0.0	C 2.0.0.0 R 120/1 1.0.0.0 R 120/1 3.0.0.0	C 3.0.0.0 R 120/1 2.0.0.0 R 120/2 1.0.0.0 o 110/110 4.1.1.0	C 4.1.1.0/24 E2 110/130 1.0.0.0 E2 110/130 2.0.0.0 E2 110/130 3.0.0.0

Default Seed Metrics

Protocol	Default Seed Metrics
RIP	Infinity
IGRP/EIGRP	Infinity
OSPF	20 for all except BGP, which is 1
IS-IS	0
BGP	BGP metric is set to IGP metric value

Self Check


- 1. How is a seed metric used in redistribution?
- 2. What does a metric of infinity tell the router?
- 3. Which routing protocols should be configured with default metrics to prevent the default of infinity?

Configuring and Verifying Route Redistribution

Redistribution Supports All Protocols

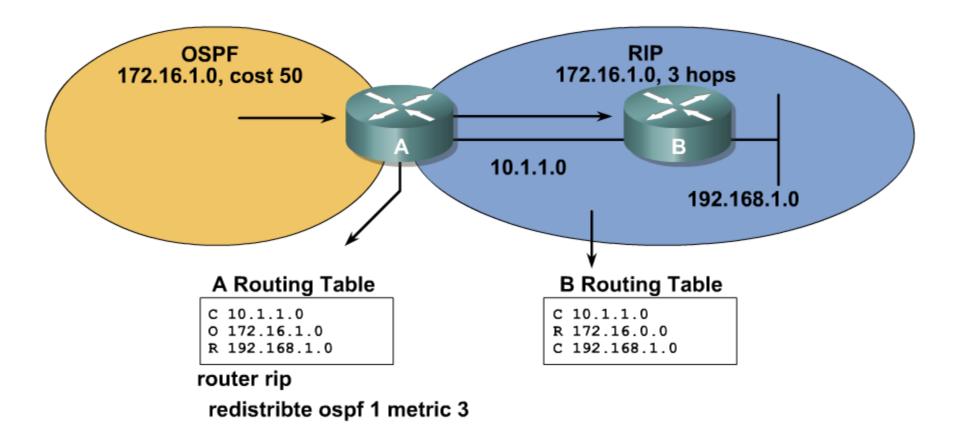
RtrA(config)#router rip		
RtrA(config-router)#redistribute ?		
bgp	Border Gateway Protocol (BGP)	
connected	Connected	
eigrp	Enhanced Interior Gateway Routing Protocol	
(EIGRP)		
isis	ISO IS-IS	
iso-igrp	IGRP for OSI networks	
metric	Metric for redistributed routes	
mobile	Mobile routes	
odr	On Demand stub Routes	
ospf	Open Shortest Path First (OSPF)	
rip	Routing Information Protocol (RIP)	
route-map	Route map reference	
static	Static routes	
<cr></cr>		

- Locate the boundary router between two routing processes.
- Determine which routing process is the core or backbone process
- Determine which routing process is the edge or migration process
- Select a method for injecting the required edge protocol routes into the core.

Configuring Redistribution into RIP

Use this command to redistribute routes into RIP:

```
Router (config-router) # redistribute protocol
[process-id] [match route-type] [metric metric-
value] [route-map map-tag]
```

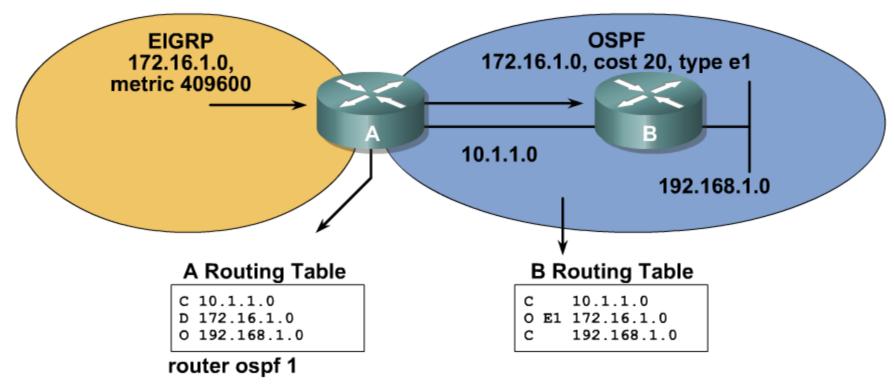

```
RtrA(config)# router rip
RtrA(config-router)# redistribute ospf ?
<1-65535> Process ID
RtrA(config-router)# redistribute ospf 1 ?
match Redistribution of OSPF routes
metric Metric for redistributed routes
route-map Route map reference
...
<cr>
```

Default metric is infinity.

The redistribute command parameters for RIP

Parameter	Description
protocol	Source protocol from which routes are being redistributed.
process-id	This value is an AS number. For OSPF, this value is an OSPF process ID.
match route-type	(Optional) Command parameter used for redistributing OSPF routes into another routing protocol. For OSPF, the criterion by which OSPF routes are redistributed into other routing domains.
metric metric- value	(Optional) Parameter used to specify the RIP seed metric for the redistributed route. When you are redistributing into RIP, this value is not specified and no value is specified using the default-metric router configuration command, then the default metric is 0, which is interpreted as infinity, and routes will not be redistributed. The metric for RIP is the hop count.
route-map map- tag	(Optional) Identifier of a configured route map to be interrogated to filter the importation of routes from this source routing protocol to the current routing protocol.

Redistributing into RIP


Configuring Redistribution into OSPF

- Use this command to redistribute routes into OSPF:
 - Router(config-router)# redistribute protocol [process-id] [metric metric-value] [metric-type type-value] [route-map map-tag] [subnets] [tag tag-value]
- Default metric is 20.
- Default metric type is 2.
- Subnets do not redistribute by default.

Example: Redistribution into OSPF

```
RtrA(config) # router ospf 1
RtrA(config-router)# redistribute eigrp ?
 <1-65535> Autonomous system number
RtrA(config-router) # redistribute eigrp 100 ?
                Metric for redistributed routes
 metric
 metric-type OSPF/IS-IS exterior metric type for
redistributed routes
  route-map
                Route map reference
  subnets
              Consider subnets for redistribution into OSPF
                Set tag for routes redistributed into OSPF
  tag
  ...
  <cr>>
```

Redistributing into OSPF

redistribte eigrp 100 subnets metric-type 1


Configuring Redistribution into EIGRP

Use this command to redistribute routes into EIGRP:

```
router(config-router)# redistribute protocol
[process-id] [match {internal | external 1 |
external 2}] [metric metric-value] [route-map
map-tag]
```

Default metric is infinity.

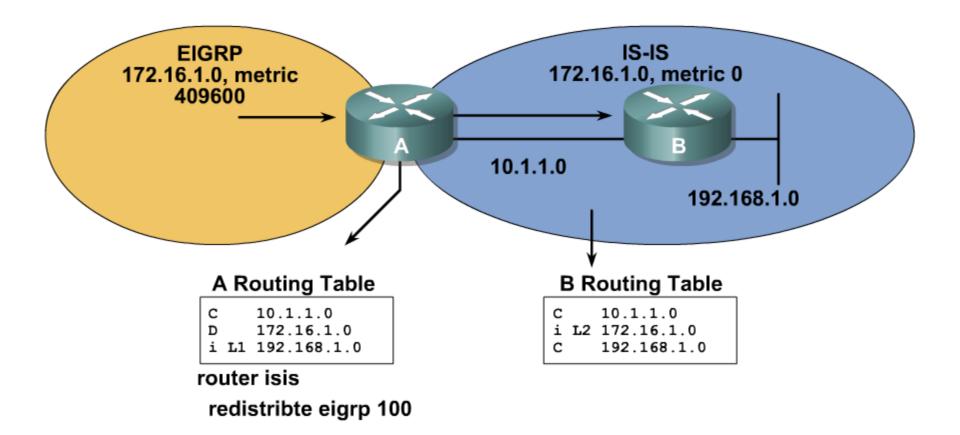
Redistributing into EIGRP

router eigrp 100

redistribte ospf 1 metric 10000 100 255 1 1500

- Bandwidth in kilobytes = 10000
- Delay in tens of microseconds = 100
- Reliability = 255 (maximum)
- Load = 1 (minimum)
- MTU = 1,500 bytes

Configuring Redistribution into IS-IS

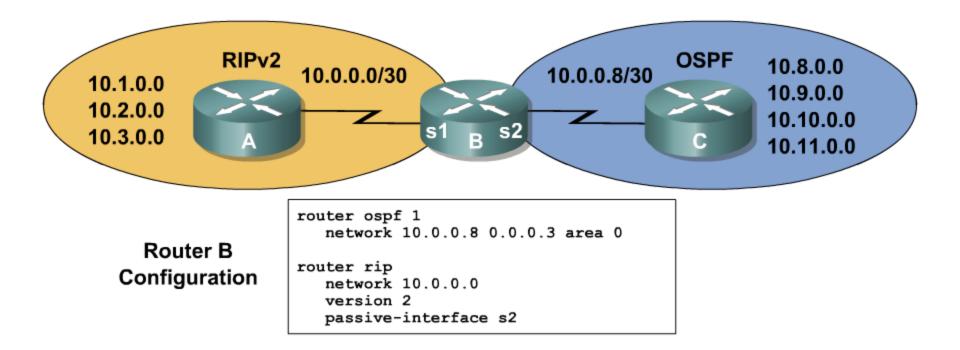

Use this command to redistribute routes into IS-IS:

```
router(config-router)# redistribute protocol
[process-id] [level level-value] [metric
metric-value] [metric-type type-value] [route-
map map-tag]
```

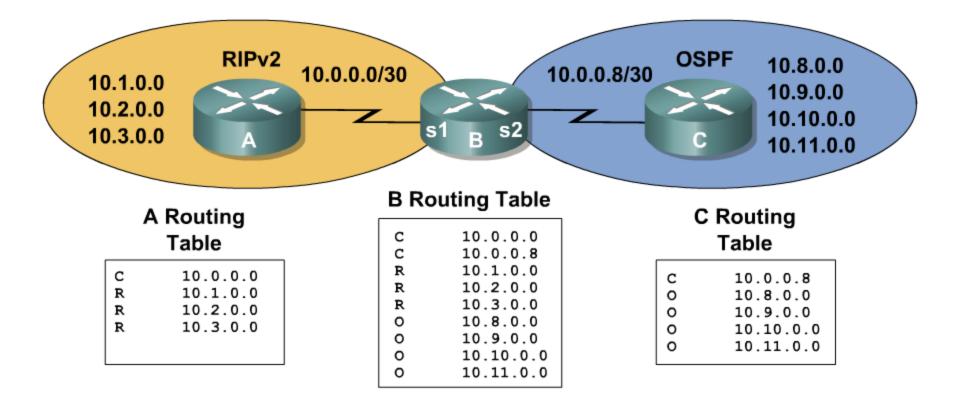
```
RtrA(config) # router isis
RtrA(config-router) # redistribute eigrp 100 ?
level-1 IS-IS level-1 routes only
level-2 IS-IS level-1 and level-2 routes
level-2 IS-IS level-2 routes only
metric Metric for redistributed routes
metric-type OSPF/IS-IS exterior metric type for redistributed routes
route-map Route map reference
...
Output Omitted
```

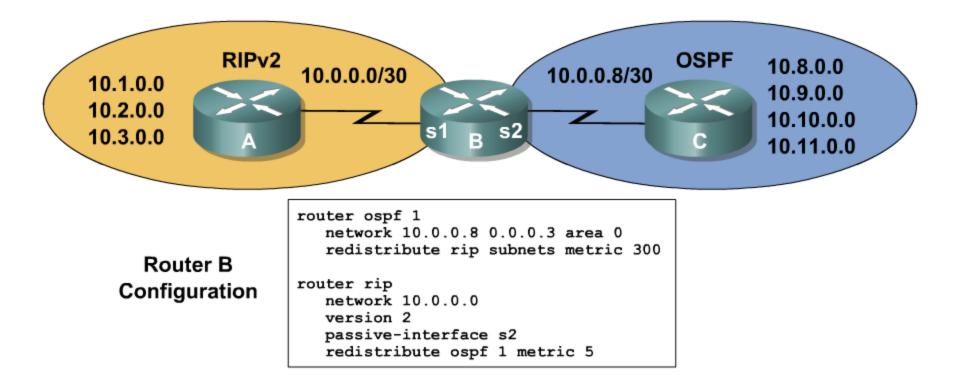
 Routes are introduced as level 2 with a metric of 0 by default.

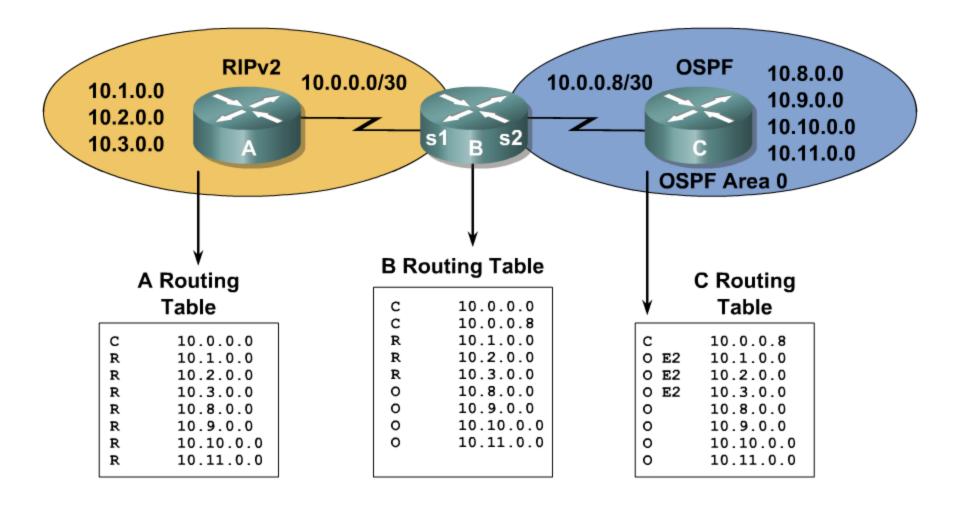
Redistributing into IS-IS


Redistributing IS-IS into Other Protocols

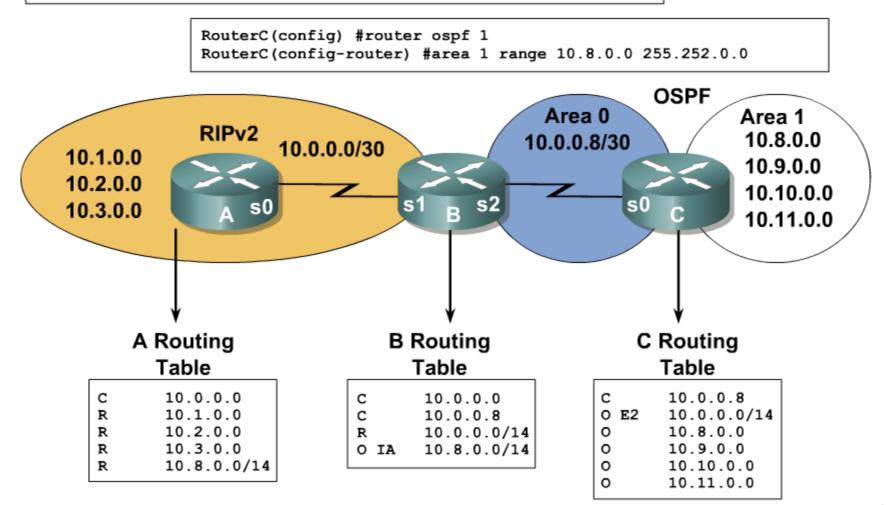
```
Router(config) # router ospf 1
Router(config-router) # redistribute isis ?
<output omitted>
    level-1 IS-IS level-1 routes only
    level-1-2 IS-IS level-1 and level-2 routes
    level-2 IS-IS level-2 routes only
<output omitted>
```


Route Redistribution Example


Example: Before Redistribution

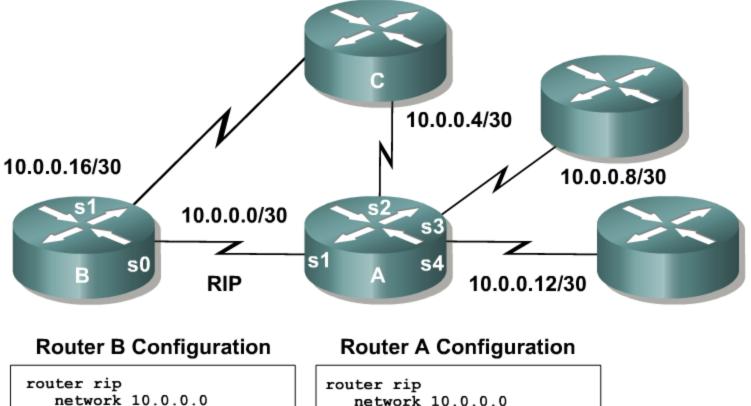

Example: Before Redistribution (Cont.)

Example: Configuring Redistribution at Router B



Example: Routing Tables After Route Redistribution

Example: Routing Tables After Summarizing Routes and Redistributions


RouterA(config) #interface s0 RouterA(config-if) #ip summary-address rip 10.0.0.0 255.252.0.0

Controlling Routing Update Traffic

Using the passive-interface Command

passive-interface s1

outer rip network 10.0.0.0 passive-interface default no passive-interface s1

Route Maps

Route maps are similar to a scripting language for these reasons:

- They work like a more sophisticated access list: Top-down processing Once there is a match, leave the route map
- Lines are sequence-numbered for easier editing: Insertion of lines
 - Deletion of lines
- Route maps are named rather than numbered for easier documentation.
- Match criteria and set criteria can be used, similar to the "if, then" logic in a scripting language.

Route Map Applications

The common uses of route maps are as follows:

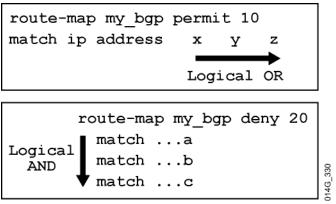
Redistribution route filtering:

A more sophisticated alternative to distribute lists

Policy-based routing:

The ability to determine routing policy based on criteria other than the destination network

BGP policy implementation:


The primary tool for defining BGP routing policies

Route Map Operation

- A list of statements composes a route map.
- The list is processed top-down like an access list.
- The first match found for a route is applied.
- The sequence number is used for inserting or deleting specific route map statements.

Route Map Operation (Cont.)

- The match statement may contain multiple references.
- Multiple match criteria in the same line use a logical OR.
- At least one reference must permit the route for it to be a candidate for redistribution.

- Each vertical match uses a logical AND.
- All match statements must permit the route for it to remain a candidate for redistribution.
- Route map permit or deny determines if the candidate will be redistributed.

route-map Commands

router(config)#

```
route-map map-tag [permit | deny] [sequence-number]
```

Defines the route map conditions

router(config-route-map)#

match {conditions}

Defines the conditions to match

```
router(config-route-map)#
```

set {actions}

Defines the action to be taken on a match

router(config-router)#

redistribute protocol [process id] route-map map-tag

Allows for detailed control of routes being redistributed into a routing protocol

The match Command

- The match commands specify criteria to be matched.
- The associated route map statement permits or denies the matching routes.

router(config-route-map)#

```
match {options}
options :
    ip address ip-access-list
    ip route-source ip-access-list
    ip next-hop ip-access-list
    interface type number
    metric metric-value
    route-type [external | internal | level-1 | level-2 |local]
    ...
```

The match commands

Command	Description
match community	Matches a BGP community
match interface	Matches any routes that have the next hop out of one of the interfaces specified
match ip address	Matches any routes that have a destination network number address that is permitted by a standard or extended ACL
match ip next- hop	Matches any routes that have a next-hop router address that is passed by one of the ACLs specified
match ip route- source	Matches routes that have been advertised by routers and access servers at the address that is specified by the ACLs
match length	Matches based on the layer 3 length of a packet
match metric	Matches routes with the metric specified
match route-type	Matches routes of the specified type
match tag	Matches tag of a route

The set Command

- The set commands modify matching routes.
- The command modifies parameters in redistributed routes.

```
router(config-route-map)#
```

```
set {options}
    options :
    metric metric-value
    metric-type [type-1 | type-2 | internal | external]
    level [level-1 | level-2 | level-1-2 |stub-area | backbone]
    ip next-hop next-hop-address
```

The set commands

Command	Description
set as-path	Modifies an AS path for BGP routes
set automatic-tag	Computes automatically the tag value
set community	Sets the BGP communities attribute
set default interface	Indicates where to output packets that pass a match clause of a route map for policy routing and have no explicit route to the destination
set interface	Indicates where to output packets that pass a match clause of a route map for policy routing
set ip default next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing and for which the Cisco IOS software has no explicit route to a destination
set ip next-hop	Indicates where to output packets that pass a match clause of a route map for policy routing
set level	Indicates where to import routes for IS-IS and OSPF
set local-preference	Specifies a BGP local preference value
set metric	Sets the metric value for a routing protocol
set metric-type	Sets the metric type for the destination routing protocol
set tag	Sets tag value for destination routing protocol
set weight	Specifies the BGP weight value

Route Maps and Redistribution Commands

Router(config)# router ospf 10
Router(config-router)# redistribute rip route-map redis-rip

- Routes matching either access list 23 or 29 are redistributed with an OSPF cost of 500, external type 1.
- Routes permitted by access list 37 are not redistributed.
- All other routes are redistributed with an OSPF cost metric of 5000, external type 2.

```
Router(config)#
route-map redis-rip permit 10
match ip address 23 29
set metric 500
set metric-type type-1
route-map redis-rip deny 20
match ip address 37
route-map redis-rip permit 30
set metric 5000
set metric-type type-2
```

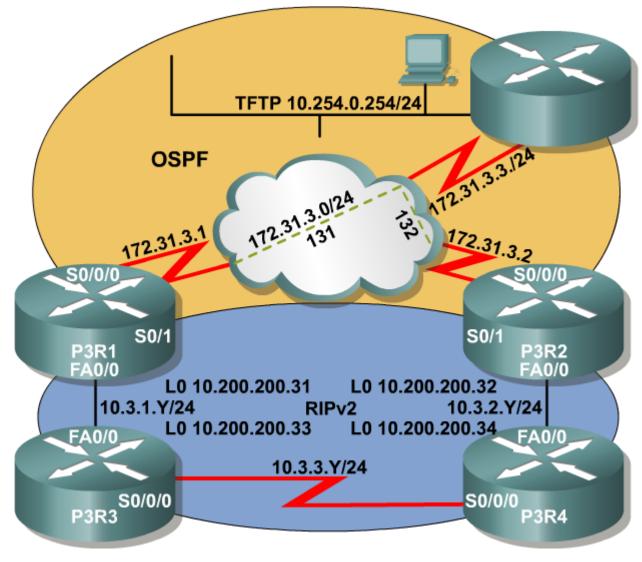
```
Router (config) #
access-list 23 permit 10.1.0.0 0.0.255.255
access-list 29 permit 172.16.1.0 0.0.0.255
access-list 37 permit 10.0.0.0 0.255.255.255
```

Modifying Administrative Distance

Router (config-router) #

```
distance administrative distance [address wildcard-mask [access-list-number | name]]
```

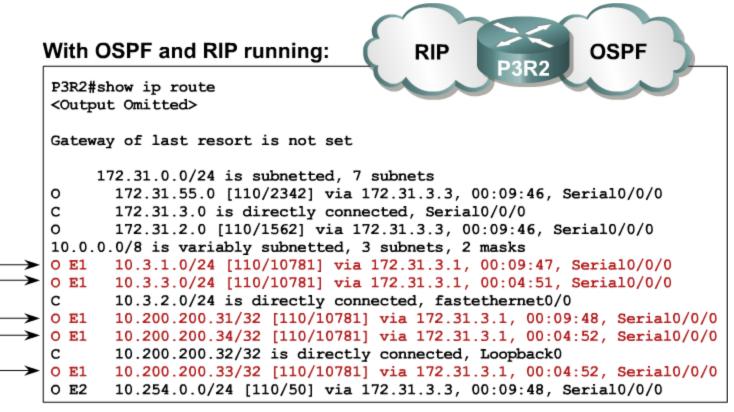
Used for all protocols except EIGRP and BGP redistribution


Router(config-router)#

distance eigrp internal-distance external-distance

```
Used for EIGRP
```

Examples



Router P3R1

```
router ospf 1
redistribute rip metric 10000 metric-type 1 subnets
network 172.31.0.0 0.0.255.255 area 0
!
router rip
version 2
redistribute ospf 1 metric 5
network 10.0.0.0
no auto-summary
```

Router P3R2

```
router ospf 1
redistribute rip metric 10000 metric-type 1 subnets
network 172.31.3.2 0.0.0.0 area 0
!
router rip
version 2
redistribute ospf 1 metric 5
network 10.0.0.0
no auto-summary
```


P3R2 includes suboptimal paths and loops.

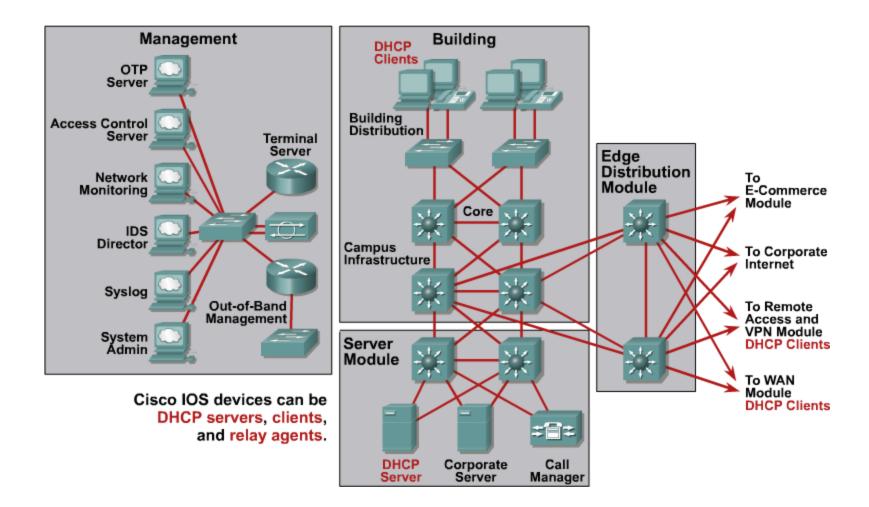
hostname P3R1 !	hostname P3R2 !
router ospf 1	router ospf 1
redistribute rip metric 10000 metric-type 1 subnets	redistribute rip metric 10000 metric-type 1 subnets
network 172.31.0.0 0.0.255.255 area 0	network 172.31.3.2 0.0.0.0 area 0
distance 125 0.0.0.0 255.255.255.255 64	distance 125 0.0.0.0 255.255.255.255 64
!	!
router rip	router rip
version 2	version 2
redistribute ospf 1 metric 5	redistribute ospf 1 metric 5
network 10.0.0.0	network 10.0.0.0
no auto-summary	no auto-summary
!	!
access-list 64 permit 10.3.1.0 0.0.0.255	access-list 64 permit 10.3.1.0 0.0.0.255
access-list 64 permit 10.3.3.0 0.0.0.255	access-list 64 permit 10.3.3.0 0.0.0.255
access-list 64 permit 10.3.2.0 0.0.0.255	access-list 64 permit 10.3.2.0 0.0.0.255
access-list 64 permit 10.200.200.31	access-list 64 permit 10.200.200.31
access-list 64 permit 10.200.200.34	access-list 64 permit 10.200.200.34
access-list 64 permit 10.200.200.32	access-list 64 permit 10.200.200.32
access-list 64 permit 10.200.200.33	access-list 64 permit 10.200.200.33


hostname P3R1 !	hostname P3R2 !
router ospf 1	router ospf 1
redistribute rip metric 10000 metric-type 1 subnets	redistribute rip metric 10000 metric-type 1 subnets
network 172.31.0.0 0.0.255.255 area 0	network 172.31.3.2 0.0.0.0 area 0
distance 125 0.0.0.0 255.255.255.255 64	distance 125 0.0.0.0 255.255.255.255 64
!	!
router rip	router rip
version 2	version 2
redistribute ospf 1 metric 5	redistribute ospf 1 metric 5
network 10.0.0.0	network 10.0.0.0
no auto-summary	no auto-summary
!	!
access-list 64 permit 10.3.1.0 0.0.0.255	access-list 64 permit 10.3.1.0 0.0.0.255
access-list 64 permit 10.3.3.0 0.0.0.255	access-list 64 permit 10.3.3.0 0.0.0.255
access-list 64 permit 10.3.2.0 0.0.0.255	access-list 64 permit 10.3.2.0 0.0.0.255
access-list 64 permit 10.200.200.31	access-list 64 permit 10.200.200.31
access-list 64 permit 10.200.200.34	access-list 64 permit 10.200.200.34
access-list 64 permit 10.200.200.32	access-list 64 permit 10.200.200.32
access-list 64 permit 10.200.200.33	access-list 64 permit 10.200.200.33

With OSPF changing administrative distance: RIP OSPF **P3R2** Gateway of last resort is not set 172.31.0.0/16 is variably subnetted, 8 subnets, 2 masks 172.31.55.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0 о С 172.31.33.0/24 is directly connected, Serial0/0/0 172.31.33.1/32 [110/1562] via 172.31.33.4, 00:00:01, Serial0/0/0 0 172.31.33.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0 0 172.31.44.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0 0 0 172.31.22.4/32 [110/781] via 172.31.33.4, 00:00:01, Serial0/0/0 172.31.11.4/32 [110/781] via 172.31.33.4, 00:00:03, Serial0/0/0 ο 172.31.66.4/32 [110/781] via 172.31.33.4, 00:00:03, Serial0/0/0 ο 10.0.0.0/8 is variably subnetted, 8 subnets, 2 masks 10.3.1.0/24 [120/2] via 10.3.2.4, 00:00:03, FastEthernet0/0 R R 10.3.3.0/24 [120/1] via 10.3.2.4, 00:00:03, FastEthernet0/0 С 10.3.2.0/24 is directly connected, FastEthernet0/0 10.200.200.31/32 [120/3] via 10.3.2.4, 00:00:04, FastEthernet0/0 R 10.200.200.34/32 [120/1] via 10.3.2.4, 00:00:04, FastEthernet0/0 R С 10.200.200.32/32 is directly connected, Loopback0 R 10.200.200.33/32 [120/2] via 10.3.2.4, 00:00:04, FastEthernet0/0 10.254.0.0/24 [110/50] via 172.31.33.4, 00:00:04, Serial0/0/0 O E2

Router P3R2 prefers RIP routes.

Know Your Network


- Be very familiar with your network BEFORE implementing redistribution
- Focus on routers with redundant paths
- Make sure no path information is lost when using the distance command

Configuring DHCP

DHCP in an Enterprise Network

Configuring an Cisco IOS DHCP Server

Router(config) #ip dhcp pool [pool name]

Enable a DHCP pool for use by hosts.

Router(config-dhcp)#network [network address][subnet mask]

Specify the network and subnet mask of the pool.

Router(config-dhcp)#default-router [host address]

Specify the default router for the pool to use.

Router(config) #ip dhcp excluded-address low-address high-address

Specify the IP address that should not assign to DHCP clients.

Optional DHCP Server Commands

Router(config-dhcp)#domain-name domain

Specifies the domain name for the client.

Router(config-dhcp)#dns-server address

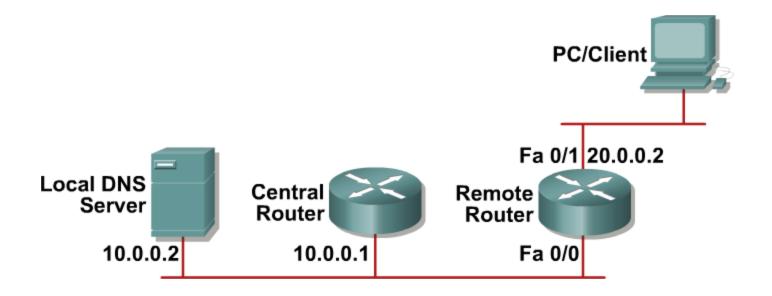
 Specifies the IP address of a DNS server that is available to a DHCP client. One is required, but up to eight can be specified.

Router(config-dhcp)#netbios-name-server address

Same as DNS, but for WINS.

Router(config-dhcp)#lease {days [hours] [minutes] | infinite}

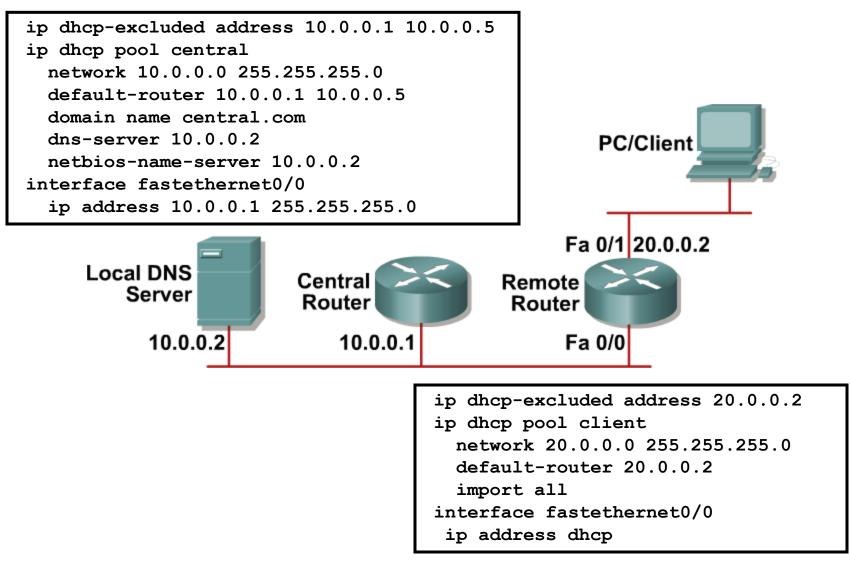
Specifies the duration of the lease. The default is a oneday lease.


DHCP Database Command and Configuration

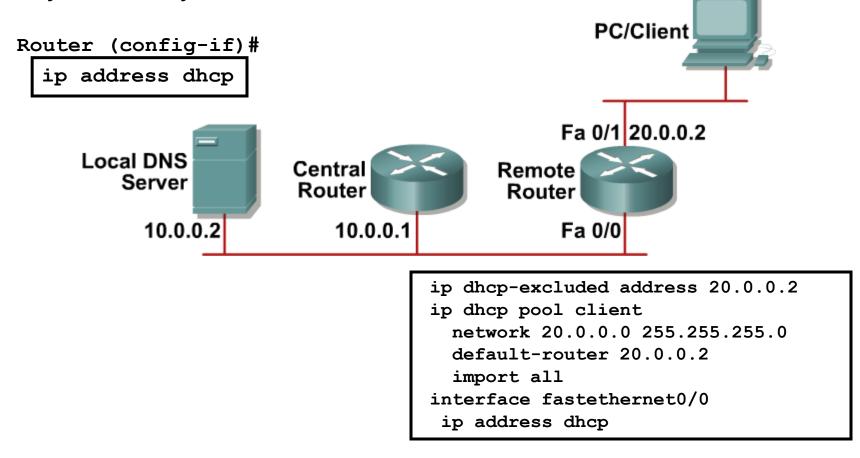
```
Router(config) #ip dhcp database url [timeout seconds | write-
delay seconds]
```

 Configures the database agent and the interval between database updates and database transfers.

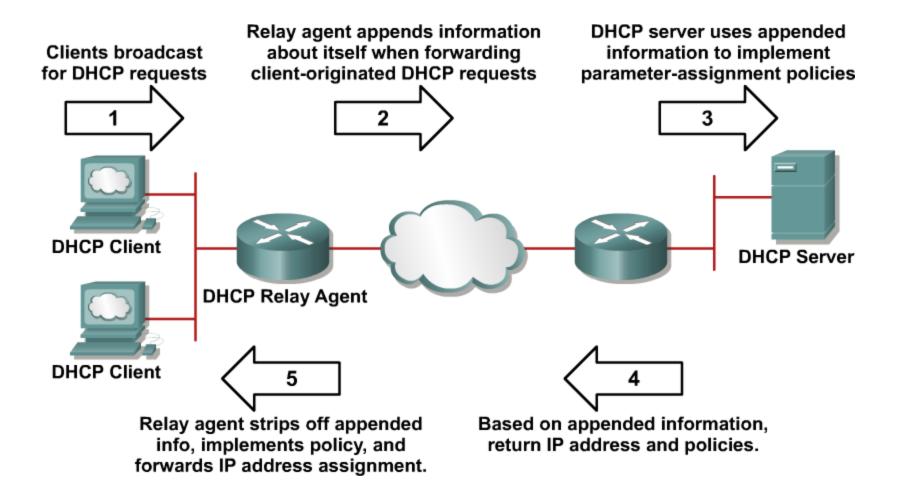
```
ipdhcp database ftp://user:passwords@172.16.4.253/router-dhcp write-delay 120
ip dhcp excluded-address 172.16.1.100 172.16.1.103
ip dhcp excluded-address 172.16.2.100 172.16.2.103
ip dhcp pool 0
network 172.16.0.0/16
domain-name global.com
dns-server 172.16.1.102 172.16.2.102
netbios-name-server 172.16.2.103 172.16.2.103
default-router 172.16.1.100
```


Importing and Autoconfiguration

Router(config-dhcp)#import all


 Used to import DHCP option parameters into DHCP server database. Used for remote DHCP pools.

Importing and Autoconfiguration (Cont.)



DHCP Client

Enables an IOS device to obtain an IP address dynamically from a DHCP server.

Relay Agent Option Support

#