
Example 5.9

Reactions at Properly Aligned Hinges (► Related Problem 5.112)

The plate is supported by hinges at A and B and the cable CE. The prop aligned hinges do not exert couples on the plate, and the hinge at A does not ϵ a force on the plate in the direction of the hinge axis. Determine the react at the hinges and the tension in the cable.

Strategy

We will draw the free-body diagram of the plate, using the given informa about the reactions exerted by the hinges at A and B. Before the equilibr equations can be applied, we must express the force exerted on the plate by cable in terms of its components.

Solution

Draw the Free-Body Diagram We isolate the plate and show the react at the hinges and the force exerted by the cable (Fig. a). The term T is the fi exerted on the plate by cable CE.

Apply the Equilibrium Equations Since we know the coordinates of po C and E, we can express the cable force as the product of its magnitude Ta unit vector directed from C toward E. The result is

$$T(-0.842\mathbf{i} + 0.337\mathbf{j} + 0.421\mathbf{k}).$$

The sums of the forces in each coordinate direction equal zero:

$$\Sigma F_x = A_x + B_x - 0.842T = 0,$$

 $\Sigma F_y = A_y + B_y + 0.337T - 400 = 0,$
 $\Sigma F_z = B_z + 0.421T = 0.$

If we sum the moments about B, the resulting equations will not contain three unknown reactions at B. The sum of the moments about B, with for in N and distances in m, is

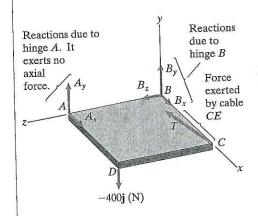
$$\sum \mathbf{M}_{\text{point }B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.2 & 0 & 0 \\ -0.842T & 0.337T & 0.421T \end{vmatrix} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 0.2 \\ A_x & A_y & 0 \end{vmatrix}$$

$$+ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0.2 & 0 & 0.2 \\ 0 & -400 & 0 \end{vmatrix}$$

$$= (-0.2A_y + 80)\mathbf{i} + (-0.0842T + 0.2A_x)\mathbf{j}$$

$$+ (0.0674T - 80)\mathbf{k} = 0.$$

The scalar equations are


$$\begin{split} \Sigma M_x &= -(0.2 \text{ m})A_y + 80 \text{ N-m} = 0, \\ \Sigma M_y &= -(0.0842 \text{ m})T + (0.2 \text{ m})A_x = 0, \\ \Sigma M_z &= (0.0674 \text{ m})T - 80 \text{ N-m} = 0. \end{split}$$

Solving these equations, we obtain the reactions

$$T = 1187 \text{ N}, \qquad A_x = 500 \text{ N}, \qquad A_y = 400 \text{ N}.$$

Then from Eqs. (1), the reactions at B are

$$B_x = 500 \,\text{N}, \qquad B_y = -400 \,\text{N}, \qquad B_z = -500 \,\text{N}.$$

(a) The free-body diagram of the plate.