
Entity-Relationship Data Model

Proposed by P. Chen in 1976.

Used for the description of the conceptual schema of the database.

Formal notation but close to natural language.

Can be mapped to various data models:

• relational.

• network.

• hierarchical.

• object-oriented.



Basic ER model concepts

Instance level Schema level

Entity Entity type

Relationship (instance) Relationship type

Cardinality constraints

Attribute value Attribute

Key value Key



Entities

Entity: something that exists and can be distinguished from other entities.

Examples: a person, an account, a course.

Entity type: a set of entities with similar properties.

Examples: persons, employees , Citibank accounts, courses.

Entity types can overlap.

Entity type extension: the set of entities of a given type in a given database

instance.

Notation:

entities: e1, e2, . . .

“entity e is of type T”: T (e).



Attributes

Domain: a predefined set of primitive, atomic values.

Examples: integers, character strings, decimals.

Entity types are not domains.

Attribute: a (partial) function from an entity type to a domain.

Attributes represent properties of entities.

Examples:

Name : Person → String

Balance : Account → Decimal

Notation:

A(e): “the value of the attribute A for the entity e”.

Example:

Name(e1)=’Brown’



Keys

Key: a (minimal) set of attributes that uniquely identifies every entity in an

entity type.

This is a schema-level notion.

Examples:

Entity type Key

Americans SSN

MCI accounts Phone number

NJ vehicles License plate number

US vehicles (License plate number,State)

There may be more than one key for an entity type. One is picked as the

primary key.



Relationships

Relationship type of arity k: a subset of the Cartesian product of some

entity types E1, . . . , Ek.

Examples:

Teaches(Employee,Class)

Supplies(Supplier,Customer,Product)

Parent(Person,Person)

Relationship types represent associations between entity types. They can have

attributes.

Relationship instance of arity k: a k-tuple of entities of the appropriate

types.

Examples:

Teaches(e1,c1) where Employee(e1) and Class(c1) and

Name(e1)=’Brown’.



Cardinality constraints

Binary relationship type R(A, B) is:

1 : 1 if for every entity e1 in A there is at most one entity e2 in B

such that R(e1, e2) and vice versa.

N : 1 if for every entity e1 in A there is at most one entity e2 in B

such that R(e1, e2).

N : M otherwise.



Diagrams I

Entity type

Relationship type

Attribute

Key attributes are underlined.



Diagrams II

1:11 1

N:1N 1

N:MN M



Advanced schema-level concepts

• isa relationships.

• weak entity types.

• complex attributes

• roles.



isa relationships

A isa B if every entity in the entity type A is also in the entity type B.

Example: Faculty isa Employee.

This is a schema-level notion.

If A isa B, then:

Attributes(B) ⊆ Attributes(A) (inheritance of attributes),

Key(A) = Key(B) (inheritance of key).

Example:

Rank : Faculty → {′Assistant′, ′Associate′, . . .}

Rank is not defined for non-faculty employees (or defined differently).



Weak entity types

A is a weak entity type if:

• it does not have a key.

• the entities in A can be identified through an identifying relationship type

R(A,B) with another entity type B.

The entities in A can be identified by the combination of:

• the borrowed key of B.

• some partial key of A.

Example.

Entity types: Employee, Dependent.

Identifying relationship type: DepOf(Dependent,Employee).

Borrowed key (of Employee): Name.

Partial key (of Dependent): FirstName.



Diagrams III

isa
isa relation-

ship

Identifying

relation-

ship

N 1

Weak entity

type



Complex attributes

Attribute values can be:

• sets (multivalued attributes).

• tuples (composite attributes).

Examples:

Multivalued attribute:

Degrees : Faculty → 2{
′B.A.′,′B.S.′,...,′Ph.D.′,...}

Composite attribute:

Address : Employee → Street× City× Zipcode

Multivalued and composite attributes can be expressed using other constructs

of the E-R model.



Diagrams IV

Multivalued

attribute

· · ·
Composite

attribute



Roles

Roles are necessary in a relationship type that relates an entity type to

itself. Different occurrences of the same entity type are distinguished by

different role names.

Example.

In the relationship type

ParentOf(Person, Person)

the introduction of role names gives

ParentOf(Parent : Person, Child : Person)



ER design

General guidelines:

• schema: stable information, instance: changing information.

• avoid redundancy (each fact should be represented once).

• no need to store information that can be computed.

• keys should be as small as possible.

• introduce artificial keys only if no simple, natural keys available.

How to choose entity types:

• things that have properties of their own, or

• things that are used in navigating through the database.

• avoid null attribute values if possible by introducing extra entity

types.



isa relationship design

Generalization (bottom-up):

• generalize a number of different entity types (with the same key) to

a single type.

• factor out common attributes.

Example:

Student isa Person

Teacher isa Person

Name : Person → String

Specialization (top-down):

• specialize an entity type to one or more more specific types.

• add attributes in more specific entity types.

Example:

Salary : Teacher → Decimal



Mapping ER diagrams to relations

Assumption: no complex attributes.

Multiple stages:

1. creating relation schemas from entity types.

2. creating relation schemas from relationship types.

3. identifying keys.

4. identifying foreign keys.

5. schema optimization.



Mapping entity types to relations

Entity type Relation schema

E1 such that E1 isa E2 Key(E2)

∪(Attrs(E1)−Attrs(E2))

E1 is a weak entity type Key(E2)

identified by R(E1, E2) ∪(Attrs(E1)−Attrs(E2))

E1 is none of the above Attrs(E1)



Mapping relationship types to relations

Relationship type Relation schema

R(E1, . . . , En) Key(E1) ∪ · · ·Key(En)

∪Attrs(R)

No relations are created from isa or identifying relationships.

Different occurrences of the same attribute name should be named

differently.



Identifying keys

Relation schema W is the result of mapping an entity type E1 or a

relationship type R(E1, E2).

Source of W Key of W

Entity type E1 Key(E1)

Weak entity type E1 Union of borrowed

and partial keys of E1

R(E1, E2) is 1 : 1 Key(E1) or Key(E2)

R(E1, E2) is N : 1 Key(E1)

R(E1, E2) is N : M Key(E1) ∪Key(E2)

These rules can be generalized to arbitrary relationship types

R(E1, . . . , En).



Identifying foreign keys

Relation schema W is the result of mapping an entity type E1 or a

relationship type R(E1, E2).

Source of W Foreign keys of W

Entity type E1 No foreign keys

Weak entity type E1 Borrowed key of E1

Entity type E1 Key(E1)

such that E1 isa E2

R(E1, E2) Key(E1), Key(E2)



Schema optimization

Combine relation schemas with identical keys coming from the same

entity type.

Example.

COURSE

CNAME CNUMBER

and

MEETS IN CNUMBER BUILDING RNUMBER

can be combined to yield:

COURSE

CNAME CNUMBER BUILDING RNUMBER



Designing relational databases

Method 1:

1. design an E-R schema.

2. map it to a relational schema.

Method 2:

1. design an E-R schema.

2. map it to a relational schema.

3. modify the relational schema.

Method 3:

1. start with a single relational schema containing all attributes.

2. decompose it.

The schema resulting from Method 1 is guaranteed to be “good”, while those

resulting from Methods 2 and 3 have to be analyzed for “goodness”.



“Good” and “bad” database schemas

“Bad” schema:

• Repetition of information. Leads to redundancy and update

anomalies.

• Inability to represent information. Leads to anomalies in insertion and

deletion.

“Good” schema:

• relation schemas in normal form (anomaly-free): 3NF, BCNF.

• decompositions have the lossless join property and preserve dependencies.



Functional dependencies (FDs)

Relation schema R(A1, . . . , An).

Sets of attributes: X, Y, Z, . . . ⊆ {A1, . . . , An}.

Functional dependency: a pair X → Y .

Notation:

• A1 · · ·An instead of {A1, . . . , An}.

• XY instead of X ∪ Y .



Theory of functional dependencies

Satisfaction: r satisfies X → Y if for all tuples t1, t2 ∈ r:

if t1[X] = t2[X], then also t1[Y ] = t2[Y ].

Logical implication: A set of FDs F logically implies X → Y , if every

relation that satisfies all the dependencies in F , also satisfies X → Y .

Notation: F |= X → Y (F logically implies X → Y ).

Closure of a dependency set F : the set of dependencies implied by

F .

Notation: F+ = {X → Y : F |= X → Y }.



Keys

Given R(A1, . . . , An) and a set of dependencies F over R.

X ⊆ {A1, . . . , An} is a key of R if:

1. the dependency X → A1 · · ·An is in F+.

2. for all proper subsets Y of X, the dependency Y → A1 · · ·An is not

in F+.

Related notions:

• primary key: one designated key.

• candidate key: one of the keys.

• superkey: superset of a key.



Inference of functional dependencies

Problem: how to tell whether X → Y ∈ F +.

Notation: U - the set of all the attributes of R.

Inference rules (Armstrong axioms):

1. reflexivity: if Y ⊆ X ⊆ U , then infer X → Y (trivial dependency).

2. augmentation: if Z ⊆ U , then from X → Y infer XZ → Y Z.

3. transitivity: from X → Y and Y → Z, infer X → Z.



Properties of axioms

Armstrong axioms are:

• sound: if X → Y is derived from F , then X → Y ∈ F +.

• complete: if X → Y ∈ F+, then X → Y is derived from F .

Additional (implied) inference rules:

4. union: from X → Y and X → Z, infer X → Y Z.

5. decomposition: if Z ⊆ Y , then from X → Y infer X → Z.



Boyce-Codd Normal Form (BCNF)

Notation:

• R is a relation schema.

• F is the set of FDs associated with R.

• F+ is the dependency closure of F .

• A is an attribute of R.

R is in BCNF if for every functional dependency X → A ∈ F+:

• A ∈ X (trivial FD), or

• X contains a key of R.

Each instance of a relation schema which is in BCNF does not contain a

redundancy (that can be detected using FDs alone).



Third Normal Form (3NF)

R is in 3NF if for every functional dependency X → A ∈ F+:

• A ∈ X (trivial FD), or

• X contains a key of R, or

• A is part of some key of R.

If R is in BCNF, it is also in 3NF.

There are relations that are in 3NF but not in BCNF:

CSZ

CITY STREET ZIP

with dependencies:

CITY STREET→ ZIP

ZIP→ CITY



Redundancies in 3NF

A relation schema in 3NF may still have an instance with redundancies.

Example.

CSZ

CITY STREET ZIP

SF First 77077

SF Third 77077

The dependency ZIP → CITY violates BCNF and identifies a redundancy.



Decompositions

Decomposition: replacement of a relation schema R by two relation schema

R1 and R2 such that:

• both R1 and R2 are subsets of R,

• R1 ∪R2 = R.

Lossless decomposition: (R1, R2) is a lossless decomposition of R with

respect to a set of FDs F if for every instance r of R that satisfies F :

πR1
(r) 1 πR2

(r) = r.

A simple criterion for checking whether a decomposition (R1, R2) is lossless:

• F |= R1 ∩R2 → R1, or

• F |= R1 ∩R2 → R2.

A sequence of decompositions of R into R1 and R2, R1 into R′
1
and R′′

1
etc.

may be viewed as a decomposition of R into more than two relation schemas.



Dependency preservation

Dependencies associated with relation schema R1 and R2 in a decomposition

(R1, R2):

FR1
= {X → Y |X → Y ∈ F+ ∧XY ⊆ R1}

FR2
= {X → Y |X → Y ∈ F+ ∧XY ⊆ R2}.

(R1, R2) preserves a dependency f iff f ∈ (FR1
∪ FR2

)+.



Decomposition into BCNF

Notation:

• F - set of FDs associated with R.

ALGORITHM:

For some nontrivial nonkey dependency X → A in F+:

1. create a relation with the schema XA.

2. remove A from R.

If the resulting schemas are not in BCNF, decompose them further.

This algorithm produces a lossless decomposition into BCNF which does not

have to preserve dependencies.



Decomposition (synthesis) into 3NF

Minimal cover F ′ for F :

• set of FDs equivalent to F (F+ = (F ′)+),

• all FDs in F ′ are of the form X → A,

• further simplification by removing dependencies or attributes from

dependencies in F ′ yields a set of FDs inequivalent to F .

ALGORITHM:

Create F ′.

Create a relation XA for every dependency X → A ∈ F ′.

Create a relation X for some key X of R.

Remove redundancies.

This algorithm produces a lossless decomposition into 3NF which preserves

dependencies.


