Parts Per Million Calculations

1. 0.2500 grams of CaCO_{3} is dissolved in HCl and enough water to give 500.0 mL of solution. What is the ppm of calcium ion $\left(\mathrm{mgCa}^{2+} / \mathrm{L}\right.$ solution) in the solution ?
$\left(0.2500 \mathrm{~g} \mathrm{CaCO}_{3}\right)\left(\frac{1 \mathrm{molCaCO}_{3}}{100.09 \mathrm{gCaCO}_{3}}\right)\left(\frac{1 \mathrm{molCa}^{2+}}{1 \mathrm{molCaCO}_{3}}\right)\left(\frac{40.08 \mathrm{gCa}^{2+}}{1 \mathrm{molCa}^{2+}}\right)\left(\frac{1000 \mathrm{mgCa}^{2+}}{1 \mathrm{gCa}^{2+}}\right)=$ $200.2 \mathrm{ppm} \mathrm{Ca}^{2+}$
2. 10.0 mL of the above solution is diluted to 100.0 mL . What is the ppm of Ca^{2+} in the dilute solution?

Use the dilution formula $\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}$ where C , concentration can be in units of molarity, ppm, ppb, etc.
$(200.2 \mathrm{ppm})(10.0 \mathrm{~mL})=\left(\mathrm{C}_{2}\right)(100.0 \mathrm{~mL})$
$\mathrm{C}_{2}=20.02 \mathrm{ppm} \mathrm{Ca}^{2+}$
One can plot a calibration curve of Absorbance versus ppm Ca ${ }^{2+}$, or other metals, and obtain the slope for the relationship between absorbance and ppm.
3. 5.00 mL of an unknown calcium solution is diluted to a volume of 20.0 mL (soln A).
10.0 mL of solution A is diluted to 50.0 mL to give soln B. Soln B has an absorbance of 0.150 . Using a calibration curve of slope $0.200 / \mathrm{ppm}$, what is the ppm of calcium in the unknown?

Beer's Law is $\mathrm{A}=(\mathrm{m})(\mathrm{ppm})$ Then $\mathrm{ppm}=\mathrm{A} / \mathrm{m}=0.150 / 0.200=0.750 \mathrm{ppm}$ for soln B.

For soln A: $(10.0 \mathrm{~mL})(\mathrm{ppm})=(0.750 \mathrm{ppm})(50.0 \mathrm{~mL})$
$\mathrm{Ppm}=3.75 \mathrm{ppm}$
For original unknown: $(5.00 \mathrm{~mL})(\mathrm{ppm})=(20.0 \mathrm{~mL})(3.75 \mathrm{~mL})$

$$
\mathrm{Ppm}=15.0 \mathrm{ppm}
$$

